Icono de modalidad 100% Online
Icono de duración 6 Meses
Icono de flexibilidad horaria Flexibilidad horaria
Precio
560€ 476€ -15% (hasta el 30/10/2025) * Becas y descuentos no aplicables a formación programada
560€
Seguridad y confianza en tus pagos online.

Descripción

¿A quién va dirigido?

Este Curso Certificado Profesional en Inteligencia Artificial (Certificación CAIP) está dirigido a profesionales de la ciencia de datos, equipos de desarrollo de software o analistas de negocios que busquen ampliar sus conocimientos sobre algoritmos de aprendizaje automático y cómo pueden ayudar a crear productos inteligentes que aporten valor a la empresa.

Objetivos

- Preparar, entrenar, evaluar y ajustar un modelo de aprendizaje automático. - Configurar y construir modelos de previsión y agrupación. - Construir modelos de clasificación mediante regresión logística y k -nearest neighbor. - Construir modelos de clasificación y regresión utilizando árboles de decisión y máquinas de vectores de soporte (SVM). - Construir redes neuronales artificiales para el aprendizaje profundo. - Poner en funcionamiento modelos de aprendizaje automático mediante procesos automatizados. - Mantener los canales y modelos de aprendizaje automático mientras están en producción.

Salidas Profesionales

Gracias a este Curso Certificado Profesional en Inteligencia Artificial (Certificación CAIP) podrás trabajar como ingeniero de machine learning, científico de datos, ingeniero de datos especializado en limpieza y preprocesamiento de datos, y analista de datos. Además, pueden asumir responsabilidades en el mantenimiento y protección de pipelines de aprendizaje automático.

Temario

UNIDAD DIDÁCTICA 1. RESOLUCIÓN DE PROBLEMAS EMPRESARIALES MEDIANTE INTELIGENCIA ARTIFICIAL (IA) Y MACHINE LEARNING (ML)

  1. Identificar soluciones de IA y ML para problemas empresariales
  2. Formular un problema de aprendizaje automático
  3. Seleccionar Enfoques para el Aprendizaje Automático

UNIDAD DIDÁCTICA 2. PREPARACIÓN DE DATOS EN INTELIGENCIA ARTIFICIAL

  1. Recopilar datos
  2. Transformar datos
  3. Diseñar características
  4. Trabajar con datos no estructurados

UNIDAD DIDÁCTICA 3. ENTRENAMIENTO, EVALUACIÓN Y AJUSTE DE UN MODELO DE APRENDIZAJE AUTOMÁTICO

  1. Entrenar un modelo de aprendizaje automático
  2. Evaluar y ajustar un modelo de aprendizaje automático

UNIDAD DIDÁCTICA 4. CONSTRUCCIÓN DE MODELOS DE REGRESIÓN LINEAL

  1. Construir Modelos de Regresión Utilizando Álgebra Lineal
  2. Construcción de modelos de regresión lineal regularizados
  3. Construcción de modelos de regresión lineal iterativos

UNIDAD DIDÁCTICA 5. CONSTRUCCIÓN DE MODELOS DE PREVISIÓN

  1. Construcción de modelos de series temporales univariantes
  2. Construcción de modelos de series temporales multivariantes

UNIDAD DIDÁCTICA 6. CONSTRUCCIÓN DE MODELOS DE CLASIFICACIÓN MEDIANTE REGRESIÓN LOGÍSTICA Y K-NEAREST NEIGHBORS

  1. Entrenar modelos de clasificación binaria mediante regresión logística
  2. Entrenar modelos de clasificación binaria mediante k-Nearest Neighbors
  3. Entrenar modelos de clasificación multiclase
  4. Evaluación de modelos de clasificación
  5. Ajuste de modelos de clasificación

UNIDAD DIDÁCTICA 7. CONSTRUCCIÓN DE MODELOS DE AGRUPACIÓN

  1. Construir Modelos de Agrupación k-Means
  2. Construcción de modelos de agrupación jerárquica

UNIDAD DIDÁCTICA 8. CONSTRUCCIÓN DE ÁRBOLES DE DECISIÓN Y BOSQUES ALEATORIOS

  1. Construcción de modelos de árboles de decisión
  2. Construcción de modelos de bosques aleatorios

UNIDAD DIDÁCTICA 9. CONSTRUCCIÓN DE MÁQUINAS DE VECTORES DE SOPORTE (SVM)

  1. Construcción de modelos SVM para clasificación
  2. Construcción de modelos SVM para regresión

UNIDAD DIDÁCTICA 10. CONSTRUCCIÓN DE REDES NEURONALES ARTIFICIALES

  1. Construir Perceptrones Multicapa (MLP)
  2. Construir redes neuronales convolucionales (CNN)
  3. Construir redes neuronales recurrentes (RNN)

UNIDAD DIDÁCTICA 11. OPERACIONALIZACIÓN DE MODELOS DE APRENDIZAJE AUTOMÁTICO

  1. Despliegue de modelos de aprendizaje automático
  2. Automatizar el Proceso de Aprendizaje Automático con MLOps
  3. Integrar Modelos en Sistemas de Aprendizaje Automático

UNIDAD DIDÁCTICA 12. MANTENIMIENTO DE OPERACIONES DE APRENDIZAJE AUTOMÁTICO

  1. Proteger los pipelines de aprendizaje automático
  2. Mantener modelos en producción

Metodología

EDUCA LXP se basa en 6 pilares

Item
Estrellas

Distintiva

EDUCA EDTECH Group es proveedor de conocimiento. Respaldado por el expertise de nuestras instituciones educativas, el alumnado consigue una formación relevante y avalada por un sello de calidad como es el grupo EDUCA EDTECH.

Gráfica

Realista

La metodología EDUCA LXP prescinde de conocimientos excesivamente teóricos o de métodos prácticos poco eficientes. La combinación de contenidos en constante actualización y el seguimiento personalizado durante el proceso educativo hacen de EDUCA LXP una metodología única.

Birrete

Student First

La metodología EDUCA LXP y la formación del grupo EDUCA EDTECH conciben al estudiante como el centro de la experiencia educativa, nutriéndose de su retroalimentación. Su feedback es nuestro motor del cambio.

Inteligencia Artificial

Inteligencia Artificial

La personalización en el aprendizaje no sería posible sin una combinación precisa entre experiencia académica e investigación tecnológica, así como la Inteligencia Artificial. Por eso contamos con herramientas IA de desarrollo propio, adaptadas a cada institución educativa del grupo.

Monitor

Profesionales en activo

Nuestro equipo de profesionales docentes, además de ser especialistas en su sector, cuentan con una formación específica en el manejo de herramientas tecnológicas que conforman el ecosistema EDUCA EDTECH.

Libro

Timeless Learning

La formación debe ser una experiencia de vida, concibiendo el e-learning como una excelente solución para los desafíos de la educación convencional. Entendemos el aprendizaje como un acompañamiento continuo del estudiante en cada momento de su vida.

Titulación

Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales. "Enseñanza No Oficial y No Conducente a la Obtención de un Título con Carácter Oficial o Certificado de Profesionalidad."
Titulacion de INESEM

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 65 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.

Explora nuestras Áreas Formativas

Construye tu carrera profesional

Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.

Certificación Profesional en Inteligencia Artificial (Curso de Preparación + Examen Oficial CAIP)

Icono de modalidad 100% Online
Icono de duración 6 Meses
Icono de flexibilidad horaria Flexibilidad horaria
Precio
560€ 476€
Matricularme