Icono de modalidad 100% Online
Icono de duración 200 horas
Icono de flexibilidad horaria Flexibilidad horaria
Precio
260€ 221€ -15% (hasta el 30/09/2025) * Becas y descuentos no aplicables a formación programada
260€
Seguridad y confianza en tus pagos online.

Descripción

¿A quién va dirigido?

Este Curso de Machine Learning está diseñado para profesionales y estudiantes interesados en adquirir habilidades en el campo del aprendizaje automático. También es adecuado para aquellos que desean ampliar sus conocimientos en minería de datos y explorar el potencial del análisis de datos en diferentes contextos. No se requieren conocimientos previos de programación.

Objetivos

- Comprender los conceptos básicos de la minería de datos y el aprendizaje automático. - Asimilar el proceso KDD y las técnicas de data mining. - Explorar las aplicaciones y el impacto del aprendizaje automático en diversas áreas. - Diferenciar entre los diferentes algoritmos y enfoques de aprendizaje automático. - Desarrollar habilidades en clustering y sistemas de recomendación. - Dominar el uso de redes neuronales y deep learning para tareas de análisis de datos. - Aplicar estrategias de aprendizaje y entrenamiento de redes neuronales profundas.

Salidas Profesionales

Tras completar este Curso de Machine Learning, estarás preparado para acceder a diversas salidas laborales en el campo del análisis de datos y la inteligencia artificial. Podrás trabajar como científico de datos, ingeniero de machine learning, analista de datos o consultor en empresas de diferentes sectores, como tecnología, finanzas, marketing y salud.

Temario

UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO

  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing

UNIDAD DIDÁCTICA 2. INTRODUCCIÓN AL MACHINE LEARNING

  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático

UNIDAD DIDÁCTICA 3. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING

  1. Introducción
  2. Algoritmos

UNIDAD DIDÁCTICA 4. SISTEMAS DE RECOMENDACIÓN

  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos

UNIDAD DIDÁCTICA 5. CLASIFICACIÓN

  1. Clasificadores
  2. Algoritmos

UNIDAD DIDÁCTICA 6. REDES NEURONALES Y DEEP LEARNING

  1. Componentes
  2. Aprendizaje

UNIDAD DIDÁCTICA 7. SISTEMAS DE ELECCIÓN

  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación

UNIDAD DIDÁCTICA 8. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW

  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo

UNIDAD DIDÁCTICA 9. SISTEMAS NEURONALES

  1. Redes neuronales
  2. Redes profundas y redes poco profundas

UNIDAD DIDÁCTICA 10. REDES DE UNA SOLA CAPA

  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón

UNIDAD DIDÁCTICA 11. REDES MULTICAPA

  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python

UNIDAD DIDÁCTICA 12. ESTRATEGIAS DE APRENDIZAJE

  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa

Metodología

EDUCA LXP se basa en 6 pilares

Item
Estrellas

Distintiva

EDUCA EDTECH Group es proveedor de conocimiento. Respaldado por el expertise de nuestras instituciones educativas, el alumnado consigue una formación relevante y avalada por un sello de calidad como es el grupo EDUCA EDTECH.

Gráfica

Realista

La metodología EDUCA LXP prescinde de conocimientos excesivamente teóricos o de métodos prácticos poco eficientes. La combinación de contenidos en constante actualización y el seguimiento personalizado durante el proceso educativo hacen de EDUCA LXP una metodología única.

Birrete

Student First

La metodología EDUCA LXP y la formación del grupo EDUCA EDTECH conciben al estudiante como el centro de la experiencia educativa, nutriéndose de su retroalimentación. Su feedback es nuestro motor del cambio.

Inteligencia Artificial

Inteligencia Artificial

La personalización en el aprendizaje no sería posible sin una combinación precisa entre experiencia académica e investigación tecnológica, así como la Inteligencia Artificial. Por eso contamos con herramientas IA de desarrollo propio, adaptadas a cada institución educativa del grupo.

Monitor

Profesionales en activo

Nuestro equipo de profesionales docentes, además de ser especialistas en su sector, cuentan con una formación específica en el manejo de herramientas tecnológicas que conforman el ecosistema EDUCA EDTECH.

Libro

Timeless Learning

La formación debe ser una experiencia de vida, concibiendo el e-learning como una excelente solución para los desafíos de la educación convencional. Entendemos el aprendizaje como un acompañamiento continuo del estudiante en cada momento de su vida.

Titulación

Titulación de Curso en Machine Learning con 200 horas y 8 ECTS expedida por UTAMED - Universidad Tecnológica Atlántico Mediterráneo.
Titulacion de INESEM

Explora nuestras Áreas Formativas

Construye tu carrera profesional

Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.

Curso en Machine Learning + 8 Créditos ECTS

Icono de modalidad 100% Online
Icono de duración 200 horas
Icono de flexibilidad horaria Flexibilidad horaria
Precio
260€ 221€
Matricularme