- Presentación
- Temario
- Metodología
- Titulación
Descripción
¿Quién puede acceder al master?
Objetivos
Salidas Profesionales
Temario
MÓDULO 1. FUNDAMENTOS DEL DEEP LEARNING Y LA IA
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL DEEP LEARNING Y LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 2. FUNDAMENTOS MATEMÁTICOS PARA LA IA: ÁLGEBRA LINEAL Y CÁLCULO
UNIDAD DIDÁCTICA 3. FUNDAMENTOS ESTADÍSTICOS Y DE PROBABILIDAD PARA LA IA
UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A PYTHON Y LIBRERÍAS CLAVE (NUMPY, PANDAS, MATPLOTLIB)
UNIDAD DIDÁCTICA 5. INTRODUCCIÓN A TENSORFLOW Y KERAS
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A PYTORCH
UNIDAD DIDÁCTICA 7. REDES NEURONALES ARTIFICIALES (ANNS): PERCEPTRONES Y MLP
UNIDAD DIDÁCTICA 8. FUNCIONES DE ACTIVACIÓN, DE PÉRDIDA Y OPTIMIZADORES BÁSICOS
MÓDULO 2. REDES NEURONALES CONVOLUCIONALES (CNNs)
UNIDAD DIDÁCTICA 1. ARQUITECTURAS BÁSICAS DE CNNS: LENET, ALEXNET, VGG
UNIDAD DIDÁCTICA 2. CAPAS CONVOLUCIONALES, DE POOLING Y DE NORMALIZACIÓN
UNIDAD DIDÁCTICA 3. ARQUITECTURAS AVANZADAS DE CNNS: RESNET Y DENSENET
UNIDAD DIDÁCTICA 4. ARQUITECTURAS AVANZADAS DE CNNS: INCEPTION Y EFFICIENTNET
UNIDAD DIDÁCTICA 5. TRANSFERENCIA DE APRENDIZAJE Y FINE-TUNING EN CNNS
UNIDAD DIDÁCTICA 6. DETECCIÓN DE OBJETOS: R-CNN, YOLO, SSD
UNIDAD DIDÁCTICA 7. SEGMENTACIÓN DE IMÁGENES: U-NET Y MASK R-CNN
UNIDAD DIDÁCTICA 8. APLICACIONES DE CNNS EN VISIÓN POR COMPUTADOR
MÓDULO 3. REDES NEURONALES RECURRENTES (RNNs) Y TRANSFORMERS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LAS REDES NEURONALES RECURRENTES (RNNS) Y SUS LIMITACIONES
UNIDAD DIDÁCTICA 2. LONG SHORT-TERM MEMORY (LSTM) Y GATED RECURRENT UNITS (GRU)
UNIDAD DIDÁCTICA 3. PROCESAMIENTO DEL LENGUAJE NATURAL (PLN): EMBEDDING DE PALABRAS
UNIDAD DIDÁCTICA 4. ARQUITECTURAS ENCODER-DECODER PARA PLN
UNIDAD DIDÁCTICA 5. MECANISMOS DE ATENCIÓN Y AUTOATENCIÓN
UNIDAD DIDÁCTICA 6. ARQUITECTURA TRANSFORMER
UNIDAD DIDÁCTICA 7. MODELOS PRE-ENTRENADOS PARA PLN: BERT Y GPT
UNIDAD DIDÁCTICA 8. APLICACIONES DE PLN: TRADUCCIÓN AUTOMÁTICA Y RESUMEN DE TEXTO
UNIDAD DIDÁCTICA 9. GENERACIÓN DE TEXTO Y CHATBOTS
MÓDULO 4. REDES GENERATIVAS Y ALGORITMOS DE APRENDIZAJE POR REFUERZO
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LAS REDES GENERATIVAS
UNIDAD DIDÁCTICA 2. GENERATIVE ADVERSARIAL NETWORKS (GANS): PRINCIPIOS Y ARQUITECTURA DCGAN
UNIDAD DIDÁCTICA 3. GANS AVANZADAS: CYCLEGAN, STYLEGAN
UNIDAD DIDÁCTICA 4. AUTOENCODERS VARIACIONALES (VAES)
UNIDAD DIDÁCTICA 5. APLICACIONES DE MODELOS GENERATIVOS: SÍNTESIS DE IMÁGENES Y DATOS
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN AL APRENDIZAJE POR REFUERZO: MARKOV DECISION PROCESSES (MDPS)
UNIDAD DIDÁCTICA 7. Q-LEARNING Y SARSA
UNIDAD DIDÁCTICA 8. DEEP Q-NETWORKS (DQN)
UNIDAD DIDÁCTICA 9. ALGORITMOS BASADOS EN POLÍTICAS: REINFORCE, ACTOR-CRITIC
UNIDAD DIDÁCTICA 10. ALGORITMOS AVANZADOS DE APRENDIZAJE POR REFUERZO: PPO, A2C
MÓDULO 5. ÉTICA, SESGOS Y EXPLICABILIDAD EN IA
UNIDAD DIDÁCTICA 1. PRINCIPIOS DE IA RESPONSABLE Y ÉTICA
UNIDAD DIDÁCTICA 2. SESGOS EN LOS DATOS Y MODELOS DE IA
UNIDAD DIDÁCTICA 3. JUSTICIA, EQUIDAD Y TRANSPARENCIA EN SISTEMAS DE IA
UNIDAD DIDÁCTICA 4. PRIVACIDAD Y PROTECCIÓN DE DATOS EN IA
UNIDAD DIDÁCTICA 5. SEGURIDAD Y ROBUSTEZ DE MODELOS DE IA
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A LA IA EXPLICABLE (XAI)
MÓDULO 6. APLICACIONES AVANZADAS Y DESPLIEGUE DE MODELOS DE DEEP LEARNING
UNIDAD DIDÁCTICA 1. DEEP LEARNING EN SALUD: DIAGNÓSTICO Y DESCUBRIMIENTO DE FÁRMACOS
UNIDAD DIDÁCTICA 2. DEEP LEARNING EN FINANZAS: TRADING ALGORÍTMICO Y DETECCIÓN DE FRAUDE
UNIDAD DIDÁCTICA 3. DEEP LEARNING EN VEHÍCULOS AUTÓNOMOS Y ROBÓTICA
UNIDAD DIDÁCTICA 4. DEEP LEARNING EN CIBERSEGURIDAD
UNIDAD DIDÁCTICA 5. OPTIMIZACIÓN DE MODELOS PARA DESPLIEGUE: CUANTIFICACIÓN Y PODA
UNIDAD DIDÁCTICA 6. DESPLIEGUE DE MODELOS EN LA NUBE (AWS, AZURE, GCP)
MÓDULO 7. APRENDIZAJE POR REFUERZO AVANZADO Y CONTROL ÓPTIMO
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL APRENDIZAJE POR REFUERZO PROFUNDO Y SUS FUNDAMENTOS MATEMÁTICOS
UNIDAD DIDÁCTICA 2. ALGORITMOS DE APRENDIZAJE POR REFUERZO BASADOS EN MODELOS: MODEL-BASED RL
UNIDAD DIDÁCTICA 3. APRENDIZAJE POR REFUERZO MULTI-AGENTE Y JUEGOS COOPERATIVOS/COMPETITIVOS
UNIDAD DIDÁCTICA 4. INTEGRACIÓN DEL CONTROL ÓPTIMO Y LA PROGRAMACIÓN DINÁMICA CON RL
UNIDAD DIDÁCTICA 5. APRENDIZAJE POR IMITACIÓN Y APRENDIZAJE INVERSO POR REFUERZO PARA LA OBTENCIÓN DE POLÍTICAS
UNIDAD DIDÁCTICA 6. APLICACIONES AVANZADAS DEL APRENDIZAJE POR REFUERZO EN ROBÓTICA, SISTEMAS AUTÓNOMOS Y FINANZAS
UNIDAD DIDÁCTICA 7. EXPLORACIÓN Y EXPLOTACIÓN EN ENTORNOS COMPLEJOS
MÓDULO 8. PROCESAMIENTO DE IMÁGENES Y VISIÓN POR COMPUTADOR AVANZADA
UNIDAD DIDÁCTICA 1. ARQUITECTURAS AVANZADAS DE REDES NEURONALES CONVOLUCIONALES PARA VISIÓN POR COMPUTADOR
UNIDAD DIDÁCTICA 2. DETECCIÓN Y SEGUIMIENTO DE OBJETOS EN TIEMPO REAL: DE R-CNN A TRANSFORMER PARA VISIÓN
UNIDAD DIDÁCTICA 3. SEGMENTACIÓN DE INSTANCIAS, SEGMENTACIÓN SEMÁNTICA Y ESTIMACIÓN DE POSES EN IMÁGENES Y VÍDEOS
UNIDAD DIDÁCTICA 4. GENERACIÓN DE IMÁGENES Y VÍDEOS CON REDES GENERATIVAS ANTAGÓNICAS (GANS) Y AUTOENCODERS VARIACIONALES (VAES)
UNIDAD DIDÁCTICA 5. VISIÓN POR COMPUTADOR EN ENTORNOS 3D: RECONSTRUCCIÓN, SLAM Y PROCESAMIENTO DE NUBES DE PUNTOS
UNIDAD DIDÁCTICA 6. APLICACIONES DE LA VISIÓN POR COMPUTADOR EN REALIDAD AUMENTADA, MEDICINA Y VEHÍCULOS AUTÓNOMOS
UNIDAD DIDÁCTICA 7. PROCESAMIENTO DE VÍDEO Y RECONOCIMIENTO DE ACCIONES
Metodología
EDUCA LXP se basa en 6 pilares
Titulación

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 65 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.
Explora nuestras Áreas Formativas
Construye tu carrera profesional
Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.
Máster Técnicas Avanzadas en Deep Learning y AI