Icono de modalidad 100% Online
Icono de duración 400 horas
Icono de flexibilidad horaria Flexibilidad horaria
Precio
360€ 306€ -15% (hasta el 14/08/2025) * Becas y descuentos no aplicables a formación programada
360€
Seguridad y confianza en tus pagos online.

Descripción

¿A quién va dirigido?

Este Curso en Business Intelligence y Big Data está dirigido a profesionales del ámbito empresarial, analistas de datos, consultores, gerentes y cualquier persona interesada en adquirir conocimientos sólidos en estas disciplinas. También es adecuado para estudiantes que busquen un ámbito laboral con grandes oportunidades.

Objetivos

- Comprender los conceptos fundamentales del Big Data y su aplicación en el ámbito empresarial. - Saber cómo gestionar las fuentes de datos y su relevancia en proyectos de Big Data. - Explorar el concepto de Open Data y su importancia en la sociedad actual. - Aprender las fases de un proyecto de Big Data y adquirir habilidades para su implementación y control. - Conocer el papel del Business Intelligence en la sociedad y su aplicación en los departamentos de una empresa. - Utilizar herramientas de BI, como los Cuadros de Mando Integrales y los Sistemas de Soporte a la Decisión. - Dominar las herramientas de visualización de datos más utilizadas en la industria, como Tableau, Power BI y D3.

Salidas Profesionales

Al completar este Curso en Business Intelligence y Big Data, estarás preparado para trabajar en diversas áreas y roles dentro de cualquier empresa u organización como analista de datos, consultor de Business Intelligence, especialista en Big Data, gestor de proyectos de BI, administrador de bases de datos, analista de marketing digital, y científico de datos.

Temario

MÓDULO 1. BIG DATA INTRODUCTION

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)

UNIDAD DIDÁCTICA 2. FUENTES DE DATOS

  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data

UNIDAD DIDÁCTICA 3. OPEN DATA

  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data

UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA

  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto

UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN

  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence

UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE

  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)

UNIDAD DIDÁCTICA 7. BIG DATA Y MARKETING

  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management

UNIDAD DIDÁCTICA 8. DEL BIG DATA AL LINKED OPEN DATA

  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL

UNIDAD DIDÁCTICA 9. INTERNET DE LAS COSAS

  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras

MÓDULO 2. BUSINESS INTELLIGENCE Y HERRAMIENTAS DE VISUALIZACIÓN

UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO

  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing

UNIDAD DIDÁCTICA 2. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL

  1. Aproximación al concepto de DataMart
  2. Procesos de extracción, transformación y carga de datos (ETL)
  3. Data Warehou
  4. Herramientas de Explotación
  5. Herramientas para el desarrollo de cubos OLAP

UNIDAD DIDÁCTICA 3. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS

  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube

UNIDAD DIDÁCTICA 4. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA

  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI

UNIDAD DIDÁCTICA 5. INTRODUCCIÓN A LA VISUALIZACIÓN DE DATOS

  1. ¿Qué es la visualización de datos?
  2. Importancia y herramientas de la visualización de datos
  3. Visualización de datos: Principios básicos

UNIDAD DIDÁCTICA 6. TABLEAU

  1. ¿Qué es Tableau? Usos y aplicaciones
  2. Tableau Server: Arquitectura y Componentes
  3. Instalación Tableau
  4. Espacio de trabajo y navegación
  5. Conexiones de datos en Tableau
  6. Tipos de filtros en Tableau
  7. Ordenación de datos, grupos, jerarquías y conjuntos
  8. Tablas y gráficos en Tableau

UNIDAD DIDÁCTICA 7. D3 (DATA DRIVEN DOCUMENTS)

  1. Fundamentos D3
  2. Instalación D3
  3. Funcionamiento D3
  4. SVG
  5. Tipos de datos en D3
  6. Diagrama de barras con D3
  7. Diagrama de dispersión con D3

UNIDAD DIDÁCTICA 8. LOOKER STUDIO (GOOGLE DATA STUDIO)

  1. Visualización de datos
  2. Tipologías de gráficos
  3. Fuentes de datos
  4. Creación de informes

UNIDAD DIDÁCTICA 9. QLIKVIEW

  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos

UNIDAD DIDÁCTICA 10. POWER BI

  1. Introducción a Power BI
  2. Instalación de Power BI
  3. Modelado de datos
  4. Visualización de datos
  5. Dashboards
  6. Uso compartido de datos

UNIDAD DIDÁCTICA 11. CARTO

  1. CartoDB

Metodología

EDUCA LXP se basa en 6 pilares

Item
Estrellas

Distintiva

EDUCA EDTECH Group es proveedor de conocimiento. Respaldado por el expertise de nuestras instituciones educativas, el alumnado consigue una formación relevante y avalada por un sello de calidad como es el grupo EDUCA EDTECH.

Gráfica

Realista

La metodología EDUCA LXP prescinde de conocimientos excesivamente teóricos o de métodos prácticos poco eficientes. La combinación de contenidos en constante actualización y el seguimiento personalizado durante el proceso educativo hacen de EDUCA LXP una metodología única.

Birrete

Student First

La metodología EDUCA LXP y la formación del grupo EDUCA EDTECH conciben al estudiante como el centro de la experiencia educativa, nutriéndose de su retroalimentación. Su feedback es nuestro motor del cambio.

Inteligencia Artificial

Inteligencia Artificial

La personalización en el aprendizaje no sería posible sin una combinación precisa entre experiencia académica e investigación tecnológica, así como la Inteligencia Artificial. Por eso contamos con herramientas IA de desarrollo propio, adaptadas a cada institución educativa del grupo.

Monitor

Profesionales en activo

Nuestro equipo de profesionales docentes, además de ser especialistas en su sector, cuentan con una formación específica en el manejo de herramientas tecnológicas que conforman el ecosistema EDUCA EDTECH.

Libro

Timeless Learning

La formación debe ser una experiencia de vida, concibiendo el e-learning como una excelente solución para los desafíos de la educación convencional. Entendemos el aprendizaje como un acompañamiento continuo del estudiante en cada momento de su vida.

Titulación

Titulación de Curso Superior en Business Intelligence y Big Data con 400 horas y 16 ECTS expedida por UTAMED - Universidad Tecnológica Atlántico Mediterráneo.
Titulacion de INESEM

Explora nuestras Áreas Formativas

Construye tu carrera profesional

Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.

Curso Superior en Business Intelligence y Big Data + 16 Créditos ECTS

Icono de modalidad 100% Online
Icono de duración 400 horas
Icono de flexibilidad horaria Flexibilidad horaria
Precio
360€ 306€
Matricularme