Icono de modalidad 100% Online
Icono de duración 1500 horas
Icono de flexibilidad horaria Flexibilidad horaria
Precio
2195€ 1756€ -20% (hasta el 17/10/2025) * Becas y descuentos no aplicables a formación programada
2195€
Seguridad y confianza en tus pagos online.

Descripción

¿Quién puede acceder al master?

El Máster en Data Engineering está dirigido a profesionales del ámbito de la informática, ingeniería o disciplinas relacionadas que deseen especializarse en el manejo y procesamiento de grandes volúmenes de datos. También es adecuado para aquellos que trabajan en roles relacionados con el análisis de datos, la inteligencia artificial o la automatización.

Objetivos

- Repasar los principios de la computación. - Abordar el Big Data desde la óptica de la ingeniería. - Estudiar el Data Science en sus fundamentos de almacenamiento, análisis y procesamiento de Datos. - Mejorar las habilidades relacionadas con el cálculo numérico en ingeniería - Emplear las herramientas de Python y R para el procesamiento, análisis y estudio de los Datos. - Ahondar en los campos del Machine Learning y el Deep Learning. - Conocer los aspectos básicos sobre los computadores. - Adquirir una introducción a la programación y herramientas de cálculo numérico. - Conocer el sistema MATLAB. - Adquirir lo referente sobre las ecuaciones algebraicas de una variable. - Realizar una interpolación y aproximación.

Salidas Profesionales

El Máster en Data Engineering te proporciona una amplia gama de salidas laborales en un mercado en constante crecimiento. Podrás trabajar como Data Engineer en empresas de diferentes sectores, donde serás responsable de diseñar y construir infraestructuras de datos, desarrollar y mantener pipelines de datos eficientes, y garantizar la integridad y calidad de los datos.

Temario

MÓDULO 1. PENSAMIENTO COMPUTACIONAL

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN PENSAMIENTO COMPUTACIONAL

  1. Presentación al pensamiento computacional
  2. ¿Qué es y para qué se usa pensamiento computacional?
  3. ¿Quiénes deben de aprender el pensamiento computacional?

UNIDAD DIDÁCTICA 2. TIPOS DE PENSAMIENTO QUE CONOCEMOS

  1. Pensamiento analítico
  2. Razonamiento aproximado, conceptual, convergente, divergente, sistemático, synvergente

UNIDAD DIDÁCTICA 3. CONOCEMOS EL PENSAMIENTO COMPUTACIONAL

  1. Proceso, conceptos y actitudes del pensamiento computacional
  2. Proceso de simulación
  3. Concepto y procesos de paralelismo automatización
  4. Trabajo en equipo en el pensamiento computacional

UNIDAD DIDÁCTICA 4. PARTE AVANZADA DE FONDO EL PENSAMIENTO COMPUTACIONAL

  1. Abstracción en pensamiento computacional
  2. Descomprimir los elementos
  3. Proceso de evaluación de pensamiento computacional

UNIDAD DIDÁCTICA 5. APLICACIONES DEL PENSAMIENTO COMPUTACIONAL

  1. Posibles problemas
  2. Datos relacionados con de entrada y salida en el pensamiento
  3. Solución al problema

MÓDULO 2. BIG DATA PARA INGENIERÍAS

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN

  1. ¿Qué es Big Data?
  2. Paradigmas de procesamiento en Big Data
  3. Las 8 V de Big Data (Volumen, Volatilidad, Variedad, Valor, Velocidad, Variabilidad, Veracidad, Validez)

UNIDAD DIDÁCTICA 2. BATCH PROCESSING

  1. MapReduce
  2. Hadoop
  3. Apache Hadoop YARN
  4. Agregación de los logs de YARN
  5. Obtención de datos en HDFS
  6. Planificación de un cluster Hadoop
  7. Instalación y configuración de Hive, Pig e Impala
  8. Clientes Hadoop incluidos en Hue
  9. Configuración avanzada de un cluster
  10. Seguridad Hadoop
  11. Gestión de recursos
  12. Mantenimiento de un cluster
  13. Solución de problemas y monitorización de un cluster

UNIDAD DIDÁCTICA 3. CIENCIA DE DATOS

  1. Data Science
  2. Apache Spark
  3. Machine Learning
  4. Apache Spark MLlib

UNIDAD DIDÁCTICA 4. DESARROLLO PARA SPARK Y HADOOP

  1. Datasets y Dataframes
  2. Operaciones en Dataframe
  3. Trabajar con Dataframes y Schemas
  4. Crear Dataframes a partir de Data Sources
  5. Guardar DataFrames en Data Sources
  6. DataFrame Schemas
  7. Rapidez y lentitud de ejecución
  8. Análisis de datos con consultas de DataFrame
  9. RDD
  10. Transformación de datos con RDDs
  11. Agregación de datos con Pair RDDs
  12. Consulta y vistas de tablas con Spark SQL
  13. Creación, configuración y ejecución de aplicaciones Spark
  14. Procesamiento distribuido
  15. Persistencia de datos distribuidos
  16. Patrones comunes al procesar datos con Spark
  17. Spark Streaming: Introducción a DStreams
  18. Spark Streaming: procesamiento de múltiples lotes
  19. Apache Spark Streaming: Data Sources

UNIDAD DIDÁCTICA 5. ANÁLISIS DE DATOS

  1. Introducción a Pig
  2. Análisis de datos básico con Pig
  3. Procesado de datos complejos con Pig
  4. Operaciones con multiconjuntos de datos con Pig
  5. Troubleshooting y optimización de Pig
  6. Introducción a Hive e Impala
  7. Consultas con Hive e Impala
  8. Administración de datos
  9. Almacenamiento y datos de rendimiento
  10. Análisis de datos relacional con Hive e Impala
  11. Datos complejos con Hive e Impala
  12. Análisis de texto con Hive e Impala
  13. Optimización Hive
  14. Optimización de Impala
  15. Extendiendo Hive e Impala

MÓDULO 3. DATA SCIENCE: ALMACENAMIENTO, ANÁLISIS Y PROCESAMIENTO DE DATOS

UNIDAD DIDÁCTICA 1.INTRODUCCIÓN A LA CIENCIA DE DATOS

  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos

UNIDAD DIDÁCTICA 2.BASES DE DATOS RELACIONALES

  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional

UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE

  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL

UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB

  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB

UNIDAD DIDÁCTICA 5. WEKA Y DATA MINING

  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos

UNIDAD DIDÁCTICA 6. PENTAHO

  1. Una aproximación a PENTAHO
  2. Soluciones que ofrece PENTAHO
  3. MongoDB & PENTAHO
  4. Hadoop & PENTAHO
  5. Weka & PENTAHO

UNIDAD DIDÁCTICA 7. R COMO HERRAMIENTA PARA BIG DATA

  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop

UNIDAD DIDÁCTICA 8. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS

  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis

UNIDAD DIDÁCTICA 9. ANÁLISIS DE LOS DATOS

  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados

MÓDULO 4. CÁLCULO NUMÉRICO PARA COMPUTACIÓN EN CIENCIA E INGENIERÍA

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LOS COMPUTADORES

  1. Introducción
  2. Conceptos básicos sobre computadores
  3. Componentes de un computador
  4. Software de un computador
  5. Parámetros característicos del computador digital
  6. Clasificación de los computadores
  7. Breve historia de los computadores
  8. Estudio de los computadores
  9. Computación Científica en supercomputadores

UNIDAD DIDÁCTICA 2. INTRODUCCIÓN A LA PROGRAMACIÓN Y HERRAMIENTAS DE CÁLCULO NUMÉRICO

  1. Introducción
  2. Resolución de problemas
  3. Lenguajes de programación
  4. Herramientas de cálculo numérico

UNIDAD DIDÁCTICA 3. EL SISTEMA MATLAB

  1. Introducción
  2. Acceso a MATLAB
  3. Introducción de matrices
  4. Operaciones sobre matrices y componentes de matrices
  5. Expresiones y variables
  6. El espacio de trabajo
  7. Funciones para construir matrices
  8. Control de flujo programando en MATLAB
  9. Funciones escalares
  10. Funciones vectoriales
  11. Funciones matriciales
  12. Generación de submatrices
  13. Ficheros .M
  14. Entrada y salida de texto
  15. Medidas de eficiencia de algoritmos
  16. Formato de salida
  17. Gráficos en dos dimensiones
  18. Gráficos en tres dimensiones
  19. Elaboración de programas en MATLAB

UNIDAD DIDÁCTICA 4. ARITMÉTICA DEL COMPUTADOR

  1. Introducción
  2. Representación interna de números
  3. Errores debidos a la representación interna de los números
  4. Errores en la realización de operaciones
  5. Algoritmos estables e inestables. Condicionamiento de un problema
  6. Ejercicios complementarios

UNIDAD DIDÁCTICA 5. ECUACIONES ALGEBRAICAS DE UNA VARIABLE

  1. Introducción
  2. Método de bisección o bipartición
  3. Método de interpolación lineal o Regula Falsi
  4. Método de aproximaciones sucesivas o punto fijo
  5. Método de Newton-Raphson
  6. Método de la secante
  7. Criterios de convergencia para los métodos iterativos
  8. Dificultades a la hora de calcular las raíces de una función
  9. Cálculo de ceros de polinomios
  10. Ejercicios complementarios

UNIDAD DIDÁCTICA 6. SISTEMAS DE ECUACIONES ALGEBRAICAS

  1. Introducción
  2. Métodos directos
  3. Métodos iterativos
  4. Comparación entre métodos iterativos y directos
  5. Introducción a los sistemas de ecuaciones algebraicas no lineales
  6. Ejercicios complementarios

UNIDAD DIDÁCTICA 7. INTERPOLACIÓN Y APROXIMACIÓN

  1. Introducción
  2. Interpolación polinomial
  3. Aproximación por polinomios
  4. Introducción a la interpolación por funciones racionales
  5. Ejercicios complementarios

UNIDAD DIDÁCTICA 8. DIFERENCIACIÓN E INTEGRACIÓN

  1. Introducción
  2. Diferenciación numérica
  3. Integración numérica
  4. Ejercicios complementarios

MÓDULO 5. ANÁLISIS DE DATOS CON PYTHON

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL ANÁLISIS DE DATOS

  1. ¿Qué es el análisis de datos?

UNIDAD DIDÁCTICA 2. LIBRERÍAS PARA EL ANÁLISIS DE DATOS: NUMPY PANDAS Y MATPLOTLIB

  1. Análisis de datos con NumPy
  2. Pandas
  3. Matplotlib

UNIDAD DIDÁCTICA 3. FILTRADO Y EXTRACCIÓN DE DATOS

  1. Cómo usar loc en Pandas
  2. Cómo eliminar una columna en Pandas

UNIDAD DIDÁCTICA 4. PIVOT TABLES

  1. Pivot tables en pandas

UNIDAD DIDÁCTICA 5. GROUPBY Y FUNCIONES DE AGREGACIÓN

  1. El grupo de pandas

UNIDAD DIDÁCTICA 6. FUSIÓN DE DATAFRAMES

  1. Python Pandas fusionando marcos de datos

UNIDAD DIDÁCTICA 7. VISUALIZACIÓN DE DATOS CON MATPLOTLIB Y CON SEABORN

  1. Matplotlib
  2. Seaborn

UNIDAD DIDÁCTICA 8. INTRODUCCIÓN AL MACHINE LEARNING

  1. Aprendizaje automático

UNIDAD DIDÁCTICA 9. REGRESIÓN LINEAL Y REGRESIÓN LOGÍSTICA

  1. Regresión lineal
  2. Regresión logística

UNIDAD DIDÁCTICA 10. ÁRBOL DE DECISIONES

  1. Estructura de árbol

UNIDAD DIDÁCTICA 11. NAIVE BAYES

  1. Algoritmo de Naive bayes
  2. Tipos de Naive Bayes

UNIDAD DIDÁCTICA 12. SUPPORT VECTOR MACHINES (SVM)

  1. Máquinas de vectores soporte (Support Vector Machine-SVN
  2. 2.¿Cómo funciona SVM?
  3. Núcleos SVM
  4. Construcción de clasificador en Scikit-learn

UNIDAD DIDÁCTICA 13. KNN

  1. K-nearest Neighbors (KNN)
  2. Implementación de Python del algoritmo KNN

UNIDAD DIDÁCTICA 14. PRINCIPAL COMPONENT ANALYSIS (PCA)

  1. Análisis de componentes principales

UNIDAD DIDÁCTICA 15. RANDOM FOREST

  1. Algoritmo de random forest

MÓDULO 6. DATA SCIENCE Y PROGRAMACIÓN ESTADÍSTICA CON PYTHON Y R

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS

  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos

UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES

  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional

UNIDAD DIDÁCTICA 3. PYTHON Y EL ANÁLISIS DE DATOS

  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data

UNIDAD DIDÁCTICA 4. R COMO HERRAMIENTA PARA BIG DATA

  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop

UNIDAD DIDÁCTICA 5. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS

  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis

UNIDAD DIDÁCTICA 6. ANÁLISIS DE LOS DATOS

  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados

MÓDULO 7. INTRODUCCIÓN APRENDIZAJE AUTOMÁTICO (MACHINE LEARNING)

UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING

  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático

UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING

  1. Introducción
  2. Algoritmos

UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN

  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos

UNIDAD DIDÁCTICA 4. CLASIFICACIÓN

  1. Clasificadores
  2. Algoritmos

UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING

  1. Componentes
  2. Aprendizaje

UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN

  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación

MÓDULO 8. DESARROLLO DE DEEP LEARNING

UNIDAD DIDÁCTICA 1. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW

  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo

UNIDAD DIDÁCTICA 2. SISTEMAS NEURONALES

  1. Redes neuronales
  2. Redes profundas y redes poco profundas

UNIDAD DIDÁCTICA 3. REDES DE UNA SOLA CAPA

  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón

UNIDAD DIDÁCTICA 4. REDES MULTICAPA

  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python

UNIDAD DIDÁCTICA 5. ESTRATEGIAS DE APRENDIZAJE

  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa

MÓDULO 9. PROYECTO FINAL DE MÁSTER

Metodología

EDUCA LXP se basa en 6 pilares

Item
Estrellas

Distintiva

EDUCA EDTECH Group es proveedor de conocimiento. Respaldado por el expertise de nuestras instituciones educativas, el alumnado consigue una formación relevante y avalada por un sello de calidad como es el grupo EDUCA EDTECH.

Gráfica

Realista

La metodología EDUCA LXP prescinde de conocimientos excesivamente teóricos o de métodos prácticos poco eficientes. La combinación de contenidos en constante actualización y el seguimiento personalizado durante el proceso educativo hacen de EDUCA LXP una metodología única.

Birrete

Student First

La metodología EDUCA LXP y la formación del grupo EDUCA EDTECH conciben al estudiante como el centro de la experiencia educativa, nutriéndose de su retroalimentación. Su feedback es nuestro motor del cambio.

Inteligencia Artificial

Inteligencia Artificial

La personalización en el aprendizaje no sería posible sin una combinación precisa entre experiencia académica e investigación tecnológica, así como la Inteligencia Artificial. Por eso contamos con herramientas IA de desarrollo propio, adaptadas a cada institución educativa del grupo.

Monitor

Profesionales en activo

Nuestro equipo de profesionales docentes, además de ser especialistas en su sector, cuentan con una formación específica en el manejo de herramientas tecnológicas que conforman el ecosistema EDUCA EDTECH.

Libro

Timeless Learning

La formación debe ser una experiencia de vida, concibiendo el e-learning como una excelente solución para los desafíos de la educación convencional. Entendemos el aprendizaje como un acompañamiento continuo del estudiante en cada momento de su vida.

Titulación

Titulación de Máster de Formación Permanente en Data Engineering con 1500 horas y 60 ECTS expedida por UTAMED - Universidad Tecnológica Atlántico Mediterráneo.
Titulacion de INESEM

Explora nuestras Áreas Formativas

Construye tu carrera profesional

Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.

Máster de Formación Permanente en Data Engineering + 60 Créditos ECTS

Icono de modalidad 100% Online
Icono de duración 1500 horas
Icono de flexibilidad horaria Flexibilidad horaria
Precio
2195€ 1756€
Matricularme